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SUMMARY 

We study the steady-state three-dimensional flow which occurs in a horizontal crucible of molten metal under 
the action of a horizontal temperature gradient. The geometry and the boundary conditions are similar to 
those encountered in the Bridgman growth process of semiconductor crystals. We find that three-dimensional 
effects can have a dramatic influence upon the flow, which, before the onset of periodic disturbances, differs 
appreciably from its two-dimensional counterpart. We also investigate the sensitivity of the flow to non- 
symmetric disturbances. 
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1. INTRODUCTION 

In an earlier paper, Crochet, Geyling and Van Schaftingen' have investigated the two-dimensional 
time-dependent flow which occurs in a molten metal contained in a rectangular cavity subjected to 
a horizontal temperature gradient. Such a configuration is typical of the Bridgman crystal growth 
process, where it is known that thermal oscillations appear beyond a critical value of the 
temperature gradient. The phenomenon was well illustrated in experiments carried out by Hurle, 
Jakeman and Johnson2 with a crucible of molten gallium. 

Crochet, Geyling and Van Schaftingen' have shown that the occurrence of a periodic motion in 
the melt is not incompatible with the plane flow hypothesis. At fairly low values of the Grashof 
number, the structure of the flow in the cavity subdivides into multiple cells which eventually 
oscillate in size and intensity, producing at the same time a periodic temperature field. Other 
explanations for the onset of periodic disturbances have been proposed by Hart3 and Gill.4 

The subdivision of the flow structure into multiple cells is already present in the steady-state 
configuration, and one may wonder whether this feature is preserved in a three-dimensional flow 
configuration which is typical of the Bridgman growth process, i.e. where the width of the crucible is 
close to twice its depth. Mallinson and de Vahl Davis' have indeed shown that three-dimensional 
effects can be very important in a cavity with side heating. In the present paper, we would like to 
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investigate the nature of the three-dimensional steady state flow occurring in the crucible, and to 
discover whether, at that early stage of the flow, one may indeed observe multiple cells which will 
eventually generate the periodic motion. 

We wish to pursue our investigation with the use of finite elements. Our main incentive is the 
development of numerical techniques for predicting the location of the liquid-solid interface 
during the growth process; finite elements are well suited for such a purpose. The literature on 
three-dimensional finite elements is, however, scarce. Although three-dimensional finite elements 
are widely used in structural mechanics, their development within the context of fluid mechanics 
has been slow. The obvious reason is the high computer cost associated with the iterations in 
solving non-linear problems. For our present purpose, it has been found necessary to investigate 
the behaviour of several finite element algorithms. A major concern in selecting a finite element is to 
keep a proper balance between cost and accuracy. Out of six possible elements, only two have been 
retained. The final selection has taken into account the fact that highly refined meshes would be 
prohibitive for representing the flow domain. 

After a short presentation of the basic equations in section 2, we will analyse the performances of 
our finite elements in section 3, on the basis of a comparison with a two-dimensional solution on a 
highly refined mesh. In section 4, we will analyse the three-dimensional steady flow in a rectangular 
parallelepiped and discover that the three-dimensional flow differs sensibly from its two- 
dimensional counterpart. This will be further emphasized in section 5 where we exhibit trajectories 
of material particles. 

The experimental results by Hurle, Jakeman and Johnson’ had shown evidence of a lack of 
symmetry of the flow with respect to the intended longitudinal plane of symmetry. In section 6, we 
consider the full crucible in order to leave enough freedom for a non-symmetrical motion. Also, we 
introduce a slight lack of symmetry of the boundary conditions, but the flow remains essentially 
symmetrical. 

Finally, in section 7, we consider briefly the flow in a cylindrical crucible. 

2. BASIC EQUATIONS 

We wish to calculate a three-dimensional buoyancy-driven flow in a crucible filled with molten 
metal. Two different shapes will be adopted for the crucible: a rectangular parallelepiped and a half 
cylinder with straight ends. The upper boundary is a free surface. In the Bridgman growth process, 
the crucible is surrounded by heating elements and the real thermal boundary conditions are fairly 
complex. In the present paper, we will assume that the temperature is imposed on the boundary 
(including the free surface) and varies linearly between the two ends. The horizontal temperature 
gradient creates natural convection in the crucible. 

In view of the relatively narrow range of temperatures encountered in the Bridgman process, we 
may assume that the shear viscosity of the melt is uniform. The motion is then governed by the 
Navier-Stokes equations with the Boussinesq approximation for the body forces, i.e. 

v - v  = 0, (1) 
where p is the pressure, v the velocity field, g the acceleration due to gravity, v the kinematic 
viscosity; p1 is the density at the melting point, and the density p is given by 

P = P 1 [ 1 -  
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where T is the temperature and CL the coefficient of thermal expansion. The symbols V and A denote 
respectively the gradient and the Laplacian operators. 

The temperature field is the solution of the energy equation, which has the form 

aT 
- + V - V T  = K A T ,  
at 

where K is the thermal diffusivity of the melt. We assume that there are no heat sources in the melt 
and we neglect viscous dissipation. The present paper being devoted to the calculation of steady- 
state solutions, the partial derivatives with respect to time will be omitted in (1) and (3). 

It is convenient to solve the problem in terms of non-dimensional variables. We select the depth h 
of the melt as a characteristic length, the ratio v/h as a characteristic velocity and the maximum 
temperature difference between the ends as a characteristic temperature. Then the system (1)-(3) 
becomes 

- V p  + Av - Gr T e  - v*Vv  = 0, 

(3) 

v - v  = 0, (4) 
A T -  P r v * V T = O ,  

where e is a unit vector orientated along the gravity field. The Grashof number Gr is given by 

a(T,  - To)gh3 
V 2  

Gr = 7 

where ( T l  - T o )  is the temperature difference between the end walls and g is the acceleration due to 
gravity. The Prandtl number is defined by 

Pr = v/u. ( 5 )  

The order of magnitude of Gr in practical applications is lo6 to lo7. The Prandtl number of 
molten metals is of order of In part I of the present series,' we adopted Pr = 0.015 for the 
growth of gallium arsenide. Later physical investigations have shown that Pr = 0.069 is a more 
appropriate value, which will be adopted in the present paper. 

The system (4) will be solved by means of the finite element method. The flow domain is covered 
by a mesh of solid elements on which one identifies nodes and nodal values for the three velocity 
components, the temperature and possibly the pressure. We will use the same shape functions for 
the velocity and the temperature interpolation, whereas 4' denotes the shape functions for the 
pressure. The finite element representation is given as follows: 

where V', Ti  and P i  denote the nodal values associated with the velocity components, the 
temperature and the pressure, respectively. 

In order to calculate these nodal values, we use the Galerkin formulation of the field 
equations (4). More precisely, we replace the system (4) by the system 

( $'; v*.Vv*) + (V$T; - p*I + (Vv* + VV*=))  + (I)'; Gr T * e )  = Fi, 

(I)'; Prv**VT*)  + (V$T; V T * )  = Qi, 
(4'; v . v *  ) = 0, (7) 

where the brackets denote the L2 scalar product, I is the unit vector, Fi is nodal force and Qi is the 
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nodal flux corresponding to the ith node on the boundary. The non-linear algebraic system in the 
nodal values V', Ti and Pi is solved by successive increments of Gr coupled with Newton-Raphson 
iterations. 

Since the iterative procedure can be very costly for solving non-linear three-dimensional flows, 
special care is needed for selecting the shape functions $' and 4' in (6). 

3. CHOICE OF A FINITE ELEMENT 

The problem to be solved here is truly three-dimensional, in the sense that the flow cannot be 
considered insensitive to the width of the crucible. The solution of three-dimensional coupled 
problems is very expensive in computer time, and the choice of a finite element algorithm must 
result from a compromise between precision and economy. For choosing the most appropriate 
element, we have compared six different algorithms and studied their behaviour in the solution of a 
two-dimensional problem which is representative of the three-dimensional problems to be solved 
at a later stage. 

The three finite elements that we have used are shown in Figure 1: element (a) is the classical 
eight-node Lagrangian or serendipity element, element (b) is the twenty-node serendipity element 
and element (c) is the Lagrangian twenty-seven-node element. With element (a), trilinear shape 
functions have been used for interpolating the velocity components and the temperature between 
the nodes, whereas (quadratic) serendipity and triquadratic shape functions have been adopted 
with elements (b) and (c), respectively. In taking care of the incompressibility constraint, we have 
explored two different approaches. In the first approach, the pressure is made explicit, and its 
interpolation is given by means of polynomials which have one degree less than the polynomials 
used for interpolating the velocity field; a constant pressure is used with element (a), whereas 
trilinear shape functions are adopted with (b) and (c). In the second approach, we have used the 
penalty formulation in which the pressure is given a constitutive equation, i.e. 

p = - AVY, (8) 
and the right-hand side of (8) is substituted for p in (1). The procedure requires the use of reduced 
integration for the calculation of the stiffness matrix. The natures of the six elements are 
summarized in Table I. 

The six elements have been tried on a typical two-dimensional problem shown in Figure 2; the 
geometry corresponds to a 2 x 1 container with a free surface on top. The fluid does not slip along 
the bottom and the side walls, and the temperature on the boundary is a linear function of the 
horizontal co-ordinate. For the test problem, Pr = 0.069 and Gr = 750,000; the value of Gr is low 

(a) (b) (c )  

Figure 1. Three-dimensional elements: (a) eight-node brick element, (b) twenty-node serendipity element, (c) twenty-seven- 
node Lagrangian element 
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T =  1 

u = v = o  

53 

free surface 

T= 0 

u=v=o 

Table I. Finite elements used for the comparison 

free surface P T = O  

Velocity and temperature Pressure 
Element interpolation interpolation Result 

I Trilinear Constant Pressure modes 
I1 Trilinear Penalty 
I11 Serendipity quadratic Trilinear Vanishing pivot 
IV Serendipity quadratic Penalty Inaccurate 
V Triquadratic Trilinear 
VI Triquadratic Penalty Ill-Conditioned 

T = l - x / 2 ,  t x = O ,  v = O  

T =  1 

u = v = o  u=v=o 

T = 1 - ~ / 2  , u = v = O  

Figure 2. Geometry and boundary conditions of the test problem 

enough to ensure the existence of a steady-state solution. A reference solution has been obtained by 
means of a two-dimensional program using Lagrangian elements with biquadratic shape functions 
for the velocity components and the temperature and bilinear shape functions for the pressure. The 
mesh for the reference solution is very dense; it contains 38 x 20 elements and 3157 nodes (10,290 
variables). For studying the behaviour of trilinear shape functions, we have adopted a mesh of 
19 x 10 elements; for triquadratic and serendipity elements, the mesh contains 9 x 5 elements so 
that all meshes have essentially the same number of nodes. 

Problems are encountered with four of the six elements. Element I gives rise to chequerboard 
pressure modes.6 A zero pivot occurs during the Gaussian elimination with element 111 (with 
diagonal pivoting), and the convergence properties of the iterative process with element VI were so 
poor that we could not reach a value of Gr higher than 10,000. The solution obtained with 
element IV deviates too much from the reference solution, and this confirms the superiority of 
Lagrangian elements over serendipity elements in convective problems. The axial velocity profile 
on the free surface obtained with element IV is compared to the reference solution in Figure 3, 
together with the results of elements I1 and V. We are thus left with elements I1 and V. The 
mathematical theory of finite elements shows that element V has a faster rate of convergence than 
element 11. However, our calculations show that, within a range of economically acceptable 
meshes, using element I1 leads to significant economy in computer time. Throughout the rest of the 
paper we will use element I1 of Table I. 

4. NATURAL CONVECTION IN A RECTANGULAR CRUCIBLE 

We wish to compare the three-dimensional flow taking place in a rectangular parallelepiped to the 
two-dimensional approximation which consists of calculating a two-dimensional flow in the plane 
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Figure 3. Horizontal velocity profile on the free surface 
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Figure 4. Geometry of the rectangular crucible 

of symmetry. The geometry of the problem is shown in Figure 4. The crucible has a unit depth, a 
width equal to twice its depth, and a length equal to four times its depth, but in this section we will 
assume that there is a plane of symmetry. The (non-dimensional) temperature is 1 on the left wall 
and 0 on the right wall; the temperature on the longitudinal boundaries decreases linearly between 
the ends. The melt does not slip along the walls; however, the tangential contact forces vanish on 
the free surface and on the plane of symmetry. 
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1. 9. 8. ... T* 0. 

Figure 5. Results of the plane problem with Gr = 710,000: finite element mesh, streamlines, isotherms and contour lines of 
the horizontal velocity component. On the left: coarse mesh; on the right, refind mesh 

Let us first study the corresponding two-dimensional problem. With P r  = 0.069, a steady-state 
solution is found up to Gr = 710,000. In our earlier work, we found that the lack of convergence of 
the steady-state algorithm coincides in general with the onset of periodic temperature and velocity 
oscillations in the melt. For verifying the convergence of the two-dimensional solution we have 
used two meshes shown in Figure 5. The coarse mesh (2D1) contains 198 elements, 855 nodes and 
2795 variables; the liner mesh (2D2) contains 792 elements, 3293 nodes and 10,734 variables. Both 
gave the same limiting Grashof number. In Figure 5, we show characteristic results for both 
meshes, i.e. the streamlines, the isotherms and contour lines of the horizontal velocity component, 
for the limiting value of the Grashof number (Gr=710,000). Let us first observe that the 
convergence is good; the contour lines are essentially the same on both sides of the Figure. As we 
might expect, the contour lines are smoother with the finer mesh. Figure 5 shows the typical 
features of such flows in a 4 x 1 crucible. The flow contains two main eddies separated at  the 
bottom by a third eddy (which grows and decays in the oscillatory flow occurring beyond the 
critical value of Gr). The isotherms are dramatically distorted by heat convection, despite the fact 
that an essential boundary condition is imposed on the upper and lower boundaries. Finally, the 
contour lines of the axial velocity component (directed from the warm wall towards the cold wall) 
show that it attains its maximum on the free surface near the cold end and that the flow is very slow 
in the small eddy at the bottom of the crucible. 

Let us now consider the three-dimensional problem described in Figure 4. Again, for testing the 
validity of our numerical results, we have considered two finite element meshes. The coarse mesh 
(3D1) contains 32 x 10 x 9 = 2880 elements, with 3630 nodes and 14,520 variables; the refined 
mesh (3D2) contains 40 x 14 x 10 = 5600 elements, with 6765 nodes and 27,060 variables. 
Although the number of eight-node bricks along each side is not especially large, we observe that 
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the number of variables has already reached the impressive number of 27,060. A perspective view of 
the mesh 3D2 is shown in Figure 6. 

The critical values of the Grashof number beyond which the iterative procedure would not 
converge are different for meshes 3D1 and 3D2. The value is 300,000 with the coarse mesh and 
500,000 with the refined mesh, to be compared with 710,000 in the plane problem. We have not yet 
investigated the meaning of the limit value of Gr in three-dimensional flows; such a study will 
require the use of a transient (and more expensive) algorithm. We will now consider separately three 
values of Gr and compare the two-dimensional to the three-dimensional results. 

Figure 7 compares the axial velocity profiles on the free surface (at the intersection of the free 
surface and the plane of symmetry) obtained with the two-dimensional solution and the three- 
dimensional solution on 3D2 at a value of Gr = 100,000. The two maxima of the curve 

Figure 6 .  Perspective view of the three-dimensional finite element mesh 3D2 containing 5600 elements 

G. 1. 2. 3. 4. 

Figure 7. Axial velocity profiles on the axis of symmetry of the free surface, obtained from the two-dimensional and three- 
dimensional solutions on the mesh 3D2; Gr = 100,000 
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corresponding to a two-dimensional calculation exhibit the fact that the three-cell configuration is 
already present at  that value of Gr. The curve arising from the three-dimensional solution shows 
only one maximum, and the structure of the flow must obviously be different. We may already have 
some idea of the complexity of the flow by inspection of Figure 8 which shows a perspective view of 
the horizontal velocity component on the free surface. One finds that the no-slip condition on the 
side-wall gives rise to a steep velocity gradient near it. Moreover, we observe that the horizontal 
velocity component is negative in the corner of the crucible at  the cold end; this is the sign of a 
horizontal recirculation which will be confirmed at  higher values of Gr.  

Let us now analyse the flow for Gr = 300,000, which is the maximum value for which a solution 
has been found with the coarser mesh 3D1. Figure 9 shows the axial velocity profiles on the axis of 
symmetry of the free surface obtained from the two-dimensional solution and the three-di- 
mensional solutions on the meshes 3D1 and 3D2. Two remarks must be made about Figure 9: (i) we 
find again a significant difference between two and three dimensions, which will be confirmed by 
other Figures; (ii) the curves obtained with the coarse and fine meshes do not differ sensibly, and the 
results obtained on the basis of 3D2 are trustworthy. The difference between the two-dimensional 
and the three-dimensional approaches is even more striking once we analyse the results in the plane 
of symmetry. The first column in Figure 10 shows the streamlines, the velocity vectors and the 
isotherms for the two-dimensional case. In a three-dimensional flow, it will in general be impossible 
to calculate a stream function in the plane of symmetry. Thus, in the second column of Figure 10, 
we shown the intersection of the three-dimensional meshes with the plane of symmetry, the velocity 
vectors in that plane and the isotherms. It is now evident that the three-dimensional flow differs 
appreciably from its two-dimensional counterpart. Whereas the two-dimensional flow exhibits 

w a r d  

Figure 8. Perspective view of the horizontal velocity component in the x-direction on the free surface; Gr = 100,OOO 
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Figure 9. Axial velocity profiles on the axis ofsymmetry of the free surface, obtained from the two-dimensional and three- 
dimensional solutions; Gr = 300,000 

Figure 10. Streamlines (in the two-dimensional flow), velocity vectors and isotherms at Gr = 300,000 (a) in two dimensions, 
(b) in three dimensions with mesh 3D1, (c) in three dimensions with mesh 3D2 

three typical eddies, there is only a single large convective roll in the plane of symmetry of the three- 
dimensional flow. However, since the horizontal velocity component has essentially the same order 
of magnitude in both cases, the isotherms are quite similar. From Figure 10 we may also check the 
convergence of the finite elements; the roughness of some curves obtained with 3D1 may be related 
to the fact that the iterative procedure fails to converge beyond the present value of Gr. 

The nature of the three-dimensional flow on the free surface may be analysed in Figure 11, which 
shows the intersection of the mesh with the free surface, the velocity vectors (a stream function does 



plane of symmetry 

la- w 
wall 

warm 

Figure 11. Finite element mesh, velocity vectors and contour lines of the axial velocity component on the free surface at 
Gr = 300,000 obtained with meshes 3D1 and 3D2 

warm' 

Figure 12. Perspective view of the horizontal velocity component in the x-direction on the free surface with mesh 3D2; 
Gr = 300,000 

not exist) and the contour lines of the axial velocity component. We observe in Figure 11 that the 
flow is definitely three-dimensional in some parts of the domain. In the corner next to the cold end, 
one finds a recirculating region. Another interesting feature shown in Figure 11 is the fact that the 
axial velocity component does not reach a maximum on the axis of symmetry in all cross-sections. 
This is well evidenced by Figure 12 which shows a perspective view of the horizontal velocity 
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component on the free surface, where we can also observe the region where the velocity component 
changes sign. 

Finally, we need to answer the question whether the temperature field varies in the lateral 
direction. We cannot detect the answer on the free suface since the temperature is fixed on that part 
of the boundary and therefore we examine the flow at mid-height between the bottom and the free 
surface. ln Figure 13, we show the velocity vectors and the isotherms in that plane. The velocity 
vectors show quite well a recirculating region in the cold corner, and the isotherms exhibit 
dramatic three-dimensional features. 

For Gr = 500,000, we compare results from mesh 3D2 with the two-dimensional results. They 
confirm the remarks made for Gr = 300,000. Although the two-dimensional problem reveals 
multiple cells, the flow in the plane of symmetry remains unicellular in the three-dimensional case. 
Figure 14 shows a perspective view of the axial velocity component on the free surface. We observe 

plane of symmetry 

.. . . . . . _  . . ~. . 

. . . .  . . . -/,,, . . - _ _  - - . , ,  
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.- 

. .  . . .  . .  
wall 

. . . . . . . . . . . - - - . . . . .  . . - - .  . .. . ._  __... 
. . . . . . - - - - - - - - . . . . . . . ..... IT----- 

Figure 13. Velocity vectors and isotherms in a horizontal plane at mid-height at Gr = 300,000 obtained with meshes 
3D1 and 3D2 

warm 

Figure 14. Perspective view of the horizontal velocity component in the x-direction on the free surface; Gr = 500,000 
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Figure 15. Velocity vectors on the free surface; Gr = 500,000 
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Figure 16. Velocity vectors and isotherms in a horizontal plane at mid-height at Gr = 500,000 obtained with mesh 3D2 

again that the natural boundary condition is well satisfied on the plane of symmetry, that the 
velocity component is negative near the cold corners and that its maximum in the cross-sectional 
profiles does not occur on the plane of symmetry. A plot of the velocity vectors on the free surface is 
shown in Figure 15. The three-dimensional character of the flow is confirmed in Figure 16 which 
shows the velocity vectors and the isotherms in a horizontal plane located at mid-height of the 
crucible. The velocity vectors are obviously not aligned along the plane of symmetry and the 
isotherms show considerable distortion in z-direction. 

It should be added here that the isotherm maps and the basically unicellular flow that they imply 
are in accord with the experimental observations of Hurle, Jakeman and Johnson.' 

5. TRAJECTORIES IN A RECTANGULAR CRUCIBLE 

The analysis of section 4 reveals important differences between the three-dimensional flow in a 
rectangular crucible and its two-dimensional counterpart. The three-dimensional character of the 
flow is very complex, and it is not easy to form an intuitive picture of what happens in the flow. A 
useful visualization is to generate the trajectory of a material particle as a function of time in the 
crucible. 

Let x denote the position at time t of a material particle which occupies the location xo when 
t = 0. We need to solve the set of differential equations 

dx 
- = v(x), x(0) = xo dt (9) 
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The calculation is not trivial when the mesh is made of three-dimensional finite elements; indeed, 
for each value of x, one needs to find the element which contains x and the velocity vector at that 
point. The problem is much easier however with the mesh of Figure 6 made of rectangular bricks. 
The system (9) is solved by means of a second-order Runge-Kutta algorithm with a constant time 
step. The latter was selected in such a way that halving it did not alter the trajectories in a significant 
way. 

Trajectories have been calculated with the solution at Gr = 300,000 on the refined mesh 3D2, 
which has been found in section 4 to give smooth results. Let us first consider a point such that xo = 
0.2, yo = 0.9 and zo = 0.5. Referring to Figure 4, we find that the value of xo is such that the initial 
location is near the warm wall, near the free surface and at mid-distance between the lateral wall 
and the plane of symmetry. Figure 17 shows two perspective views of the trajectory of the particle 

V e 
warm -plane of symmetry cold 

Figure 17. Perspective views of the trajectory of a particle with an initial position given by xo = 0.2,~' = 0.9 and zo = 0.5. 
Mesh 3D2; Gr = 300,000 
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from a to f. Its motion is quite complex: the particle is carried towards the cold end, descends along 
the cold wall, is deflected towards the plane of symmetry and after a second descent along the cold 
wall returns to its original position. 

Next, we consider a particle with an initial location given by xo = 1, yo  = 0.8 and zo = 0.1, which 
is at a unit distance from the warm side, near the free surface and near the plane of symmetry. 
Figure 18 shows two perspective views of the trajectory of the particle which exhibit a considerable 
deviation with respect to plane flow. The global motion is that of a convective cell; however, a 
particle which descends along the cold wall near the plane of symmetry reappears on the warm wall 
near the outer surface. 

plane of 

\ 
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- 

\ 

cold \ 

warm *-plane of symmetry cold 

Figure 18. Perspective views of the trajectory of a particle with an initial position given by xo = 1, yo  = 0.8 and zo = 0.1. 
Mesh 3D2, Gr = 300,000 
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6. NON-SYMMETRIC EFFECTS IN A RECTANGULAR CRUCIBLE 

Experiments by Hurle, Jakeman and Johnson’ on a rectangular crucible of molten gallium have 
exhibited isotherms which were obviously not symmetric with respect to the geometrical plane of 
symmetry. In section 4, we have assumed at the outset that the velocity field is symmetric, and the 
domain of integration consisted of one half of the rectangular crucible. In this section, we wish to 
consider briefly the flow in the complete crucible and allow the finite element program to generate 
non-symmetric solutions. In order to approach more closely the physical boundary conditions 
imposed by Hurle, Jakeman and Johnson we will assume that the temperature is fixed on the end 
walls and that the heat flux vanishes on the side walls and on the free surface. The mesh refinement 
adopted for the present calculations is similar to the refinement found with mesh 3D1. The mesh is 
shown in Figurk 19; it contains 5600 elements, 6765 nodes and 27,060 variables. 

Figure 19. Perspective view of the finite element mesh used for representing the entire crucible 

warm - 
Figure 20. Contour lines of the axial velocity component and of the temperature on the free surface 
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Converged solutions have been obtained up to Gr = 500,000, and they do not exhibit any lack of 
symmetry. Figure 20 shows contour lines of the axial velocity component on the free surface; the 
contour lines are perfectly symmetric. Also in Figure 20, we show a plot of the isotherms on the free 
surface (a vanishing heat flux is imposed on all sides); one sees clearly the effect of the maximum 
velocity component being located away from the plane of symmetry. The flow within the plane of 
symmetry is unicellular and is essentially similar to that found in section 4. 

Another numerical test consisted in imposing on the end walls a temperature profile which 
varied slightly with the z-co-ordinate and was not symmetric with respect to the geometrical plane 
of symmetry. The deviation of the numerical solution with respect to the symmetric case was of the 
same order of magnitude as the lack of symmetry in the boundary conditions. 

7. THREE-DIMENSIONAL FLOW IN A CYLINDRICAL CRUCIBLE 

The three-dimensional analysis of the previous sections can also be used for calculating the flow in 
a cylindrical crucible made of half a quartz tube. We assume that the solution is symmetric with 
respect to the vertical plane of symmetry of the crucible. The finite element mesh used for that 
purpose is shown in Figure 21; it contains 3080 elements, 3813 nodes and 15,252 variables. As in 
section 4, we have imposed a fixed temperature on the end walls and a linearly varying temperature 
field on the side walls and on the plane of symmetry. Converged solutions have been found for 

Figure 21. Finite element mesh for calculating the flow in a cylindrical crucible 

Figure 22. Velocity vectors and isotherms in the plane of symmetry; cylindrical crucible at Gr = 300,000 
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values up to Gr = 550,000, i.e. slightly higher than for a rectangular crucible. We will show 
representative results of the solution for Gr = 300,000. 

Figure 22 shows a plot of the velocity vectors and the isotherms in the plane of symmetry. Once 
again we observe that the side walls inhibit the generation of multiple vortices; the flow in the plane 
of symmetry contains a single cell. We note the large value of the axial velocity at  the bottom of the 
crucible, which is related to the fact that its width decreases with depth. The isotherms in the plane 
of symmetry, also shown in Figure 22, exhibit the usual configuration; they should be compared 
with the plots of Figure 10. 

Figure 23 shows a plot of the velocity vectors on the free surface and a perspective view of the 
axial velocity component. Again we find a recirculating region near the cold wall. Also, we notice 
that the maximum of the axial velocity is reached at some distance from the plane of symmetry and 

'warm 

Figure 23. Velocity vectors on the free surface and perspective view of the axial velocity component; cylindrical crucible at 
Gr = 300,000 

Figure 24. Isotherms at a depth equal to half the radius of the cylindrical crucible at Gr = 300,000 
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that the finite element mesh allows for the natural boundary condition on the plane of symmetry to 
be well satisfied. 

Finally, Figure 24 shows the isotherms at a depth equal to half the radius of the crucible. The 
distorted shape of the isotherms leads us to expect skew liquid-solid interfaces in the actual growth 
process. 

8. CONCLUSIONS 

Our calculations show that three-dimensional effects can indeed be very important in the 
Bridgman growth process; the path lines are definitely not coplanar and the isothermal surfaces are 
curved in the z-direction. 

We have not found in three dimensions the multicellular pattern which we had calculated for 
two-dimensional flows. In future work, we will investigate the reason why the iterative technique 
loses its convergence at high values of Gr. In particular, a transient analysis will be useful for 
detecting the occurrence of a periodic flow. 
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